
Use tools like Git to track and manage
code changes.

Version control

Development workflow & processes

Architecture & design

Technology stack decisions

Security

Quality assurance

Documentation

Infrastructure & operations

Collaboration & communication

Skill development and training

Vendor & tool management

Performance & optimisation

Feedback and iteration

Continuous Integration/Continuous
Deployment (CI/CD) works best if you
automate code testing and deployment
to streamline development.

CI/CD

Establish a code review process to
maintain code quality and foster
collaboration.

Code review

Differentiate between development,
staging, and production environments.

Environment
management

TWELVE CATEGORIES
At Scryla we believe that the policies and processes you need fall within the following twelve
categories.

POLICIES AND
PROCESSES ALL
TECH STARTUPS
NEED TO AVOID
COSTLY MISTAKES

1 DEVELOPMENT WORKFLOW & PROCESSES

From a tech and development perspective, the
early stage of a startup is both exciting and
daunting. Laying a strong foundation from the
outset can help you avoid costly mistakes and
inefficiencies down the road.

Working in Chief Technology Officer roles for
over 20 years, Tim Ng, Founder and Director of
Scryla (your trusted tech expert) has developed
the following list. We’ve put it into an
infographic that will talk you through the key
policies and processes all tech startups need
within their tech departments.

Take a look at what you need.

Design the technical architecture keeping
scalability, maintainability, and
performance in mind.

System
architecture

Establish a normalised and scalable
database schema and consider query
optimisation.

Database
design

Define conventions for API development,
including RESTful practices,
authentication, etc.

API strategy

5 QUALITY ASSURANCE

Choose languages, frameworks, and tools
that align with the startup’s needs and
team's expertise.

Tech stack
selection

Evaluate and select external services/APIs
for functionality like payments,
messaging, etc.

Third party
services

Implement role-based access control for
different parts of the system.

Access control

SECURITY

 Encrypt sensitive data both at rest and in
transit.

Ecryption

Regularly test the system for
vulnerabilities.

Penetration
testing

Stay updated with patches for all
software and dependencies.

Security
patching

Implement unit, integration, and end-to-
end tests.

Testing
strategy

Use tools like Jira or Bugzilla to track,
prioritize, and manage bugs.

Bug tracking

Ensure that the system performs well
under load.

Performance
testing

2

3 TECHNOLOGY STACK DECISIONS

ARCHITECTURE AND DESIGN

4 SECURITY

DOCUMENTATION6

Comment code and maintain developer
documentation.

Code
documenation

Use tools like Swagger for API
documentation.

API
documentation

Maintain documentation on system
architecture, design decisions, and
flowcharts.

System
documentation

INFRASTRUCTURE AND OPERATIONS7

Choose a cloud provider (e.g., AWS,
Google Cloud, Azure) and define
deployment strategies.

Cloud strategy

Monitor system health and set up alerts
for anomalies.

Monitoring and
alerts

Regularly back up data and have a
recovery strategy in place.

Backup and
recovery

COLLABORATION AND COMMUNICATION8

Implement methodologies like Scrum or
Kanban to foster iterative development
and feedback.

Agile
development

Use tools like Slack or Microsoft Teams for
internal communication.

Communication
tools

Tools like Confluence can be used for
maintaining internal wikis and tech
documentation.

Documentation
platforms

SKILL DEVELOPMENT & TRAINING9

Ensure the tech team is continually
upskilling using training.

Training
programs

Encourage creativity and new ideas
through events or designated "innovation
time."

Hackathons &
innovation

10

Manage and review licenses for
software/tools to ensure compliance.

Software
licences

Periodically check third-party services for
performance, cost, and security.

Vendor
evaluations

VENDOR AND TOOL MANAGEMENT

PERFORMANCE AND OPTIMISATION

Use profiling tools to identify performance
bottlenecks.

Code profiling
Regularly review and optimise code,
database queries, and infrastructure.

Optimisation

11

12

Collect, review, and act on feedback from
end-users.

User feedback
loop

After major events or issues, run an
assessment to understand what went
wrong and how to avoid it in the future.

Post-mortem
analysis

FEEDBACK AND ITERATION

Contact us
Email:info@scryla.co.uk
www.scryla.co.uk

Join the conversation on LinkedIn
> scryla-consultancy-ltd

mailto:info@scryla.co.uk
https://www.scryla.co.uk/

